How do you evaluate the definite integral #int sinsqrtx dx# from #[0, pi^2]#?
1 Answer
Explanation:
First, let's integrate without the bounds.
#I=intsin(sqrtx)dx#
Make the substitution
#I=intsin(t)(2tdt)=2inttsin(t)dt#
We should then integrate this using integration by parts (IBP), which takes the form
#{(u=t,=>,du=dt),(dv=sin(t)dt,=>,v=-cos(t)):}#
Recall that you differentiate
Thus:
#I=2[uv-intvdu]=2[-tcos(t)-int(-cos(t))dt]#
#color(white)I=-2tcos(t)+2intcos(t)dt#
#color(white)I=-2tcos(t)+2sin(t)#
#color(white)I=2sin(sqrtx)-2sqrtxcos(sqrtx)#
Now we can apply the bounds:
#I_B=int_0^(pi^2)sin(sqrtx)dx=[2sin(sqrtx)-2sqrtxcos(sqrtx)]_0^(pi^2)#
#color(white)(I_B)=(2sin(pi)-2picos(pi))-(2sin(0)-2(0)cos(0))#
#color(white)(I_B)=(0-2pi(-1))-(0-0)#
#color(white)(I_B)=2pi#