How do you evaluate the definite integral #int sinsqrtx dx# from #[0, pi^2]#?

1 Answer
Nov 8, 2016

#int_0^(pi^2)sin(sqrtx)dx=2pi#

Explanation:

First, let's integrate without the bounds.

#I=intsin(sqrtx)dx#

Make the substitution #t=sqrtx#. This implies that #x=t^2#, which when differentiated shows that #dx=2tdt#. Thus:

#I=intsin(t)(2tdt)=2inttsin(t)dt#

We should then integrate this using integration by parts (IBP), which takes the form #intudv=uv-intvdu#. For the integral we're working with, we should let:

#{(u=t,=>,du=dt),(dv=sin(t)dt,=>,v=-cos(t)):}#

Recall that you differentiate #u# and integrate #dv# once you've assigned them their values.

Thus:

#I=2[uv-intvdu]=2[-tcos(t)-int(-cos(t))dt]#

#color(white)I=-2tcos(t)+2intcos(t)dt#

#color(white)I=-2tcos(t)+2sin(t)#

#color(white)I=2sin(sqrtx)-2sqrtxcos(sqrtx)#

Now we can apply the bounds:

#I_B=int_0^(pi^2)sin(sqrtx)dx=[2sin(sqrtx)-2sqrtxcos(sqrtx)]_0^(pi^2)#

#color(white)(I_B)=(2sin(pi)-2picos(pi))-(2sin(0)-2(0)cos(0))#

#color(white)(I_B)=(0-2pi(-1))-(0-0)#

#color(white)(I_B)=2pi#