How do you evaluate the definite integral #int (x^3/3+2x)dx# from #[0,2]#? Calculus Introduction to Integration Definite and indefinite integrals 1 Answer Narad T. Nov 15, 2016 The answer is #=16/3# Explanation: We use #intx^ndx=x^(n+1)/(n+1)+C (x!=-1)# #intx^3dx=x^4/4+C# #intxdx=x^2/2 +C# Therefore #int_0^2(x^3/3+2x)dx# #=[x^4/12+2x^2/2]_0^2# #=[x^4/12+x^2]_0^2# #=(16/12+4)# #=64/12=16/3# Answer link Related questions What is the difference between definite and indefinite integrals? What is the integral of #ln(7x)#? Is f(x)=x^3 the only possible antiderivative of f(x)=3x^2? If not, why not? How do you find the integral of #x^2-6x+5# from the interval [0,3]? What is a double integral? What is an iterated integral? How do you evaluate the integral #1/(sqrt(49-x^2))# from 0 to #7sqrt(3/2)#? How do you integrate #f(x)=intsin(e^t)dt# between 4 to #x^2#? How do you determine the indefinite integrals? How do you integrate #x^2sqrt(x^(4)+5)#? See all questions in Definite and indefinite integrals Impact of this question 2170 views around the world You can reuse this answer Creative Commons License