How do you evaluate the definite integral #int3xsin(x^2)# from #[0,sqrtpi]#?

How do you evaluate the definite integral #int3xsin(x^2)dx# from #[0,sqrtpi]#?

1 Answer
Sep 15, 2016

#3.#

Explanation:

We know that, #intsin y dy=-cos y+C#.

Let #y=x^2," so that, "dy=2xdx#

#:. intsin x^2*2xdx=2intxsinx^2dx=-cosx^2+C#.

#:. intxsinx^2dx=-1/2cosx^2+C#

#rArr int3xsinx^2dx=3intxsinx^2dx=-3/2cosx^2+C#

Therefore,

#int_0^(sqrtpi) 3xsinx^2dx=-3/2[cosx^2]_0^(sqrtpi)#

#=-3/2[cospi-cos0]#

#=-3/2[-1-1]#

#=-3/2*(-2)#

#=3.#