How do you evaluate the definite integral #xsin 2x dx# from 0 to #pi/2#?

1 Answer
Feb 22, 2015

I would first use Integration by Parts to solve the indefinite integral and then apply the Fundamental Theorem of Calculus:
Integration by Parts:
#intf(x)g(x)dx=F(x)g(x)-intF(x)g'(x)dx#
Where:
#F(x)=intf(x)dx#
#g'(x)=(dg(x))/dx#
Let us choose:
#f(x)=sin(2x)#
#g(x)=x#
Applying Integration by Parts you get:
#x*-cos(2x)/2-int-cos(2x)/2*1dx=#
#-xcos(2x)/2+sin(2x)/4#
Now the Fundamental Theorem of Calculus:
#int_a^bf(x)dx=F(b)-F(a)#
In your case:
#-xcos(2x)/2+sin(2x)/4|_0^(pi/2)##=#
#=[-pi/2cos(pi)/2+sin(pi)/4]-0=#
#=pi/4#