How do you evaluate the function #f (x) = 3x^2 + 3x -2# for # f (2/a)#?

1 Answer
Nov 20, 2015

By 'evaluate' I assume you mean find #a# for #f(2/a)=0#
#color(green)(a=-1+- sqrt(7))#

Explanation:

Let #color(white)(xx)y_1=3x^2+3x-2 ->f(x)#

Then #y_1=3(2/a)^2+3(2/a)-2 -> f(2/a)#

#y_1=3(4/a^2) +3(2/a)-2#

#y_1=12/a^2+6/a-2#

Let #color(white)(xx)y_2 =1/y_1# giving

#y_2=1/12a^2+1/6a -1/2 =0#

Multiply throughout by 12 giving:

#y_2=a^2+2a-6=0#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(green)("Using std form"color(white)(xxx) ax^2+bx+c=0)#

#color(green)("Where" color(white)(xx)x = (-b+-sqrt(b^2-4ac))/(2a)#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In the context of the given question we have:

#a=(-2+-sqrt((2)^2-4(1)(-6)))/(2(1))#

#a=(-2+-sqrt(4+24))/2#

#a=-1+- sqrt(7)#

#a~~ -1+- 2.65# to 2 decimal places

#a~~-3.65color(white)(x) :color(white)(x) a~~1.65#
Tony B