How do you evaluate the integral #int arctanxdx# from 0 to 2 if it converges?
1 Answer
Mar 14, 2017
First integrate
#I=intarctanxdx#
Use integration by parts. Let:
#{(u=arctanx,=>,du=dx/(1+x^2)),(dv=dx,=>,v=x):}#
Then:
#I=xarctanx-intx/(1+x^2)dx#
Which can be integrated using
#I=xarctanx-1/2ln(1+x^2)+C#
So we see that:
#int_0^2arctanxdx=[xarctanx-1/2ln(1+x^2)]_0^2#
#=2arctan2-1/2ln5-(0arctan0-1/2ln1)#
#=2arctan2-lnsqrt5#
#approx1.4096#