Let #x=sintheta#. This implies that #dx=costhetad theta#.
#intdx/(1-x^2)^(5/2)#
#=int(costhetad theta)/(1-sin^2theta)^(5/2)#
#=intcostheta/(cos^2theta)^(5/2)d theta#
#=intsec^4thetad theta#
#=intsec^2theta(1+tan^2theta)d theta#
Let #u=tantheta# so #du=sec^2thetad theta#.
#=int(1+u^2)du#
#=u+1/3u^3+C#
#=tantheta+1/3tan^3theta+C#
#=1/3tantheta(3+tan^2theta)+C#
Where #x=sintheta#, we have a triangle where the opposite side is #x# and the hypotenuse is #1#. Thus, the adjacent side is #sqrt(1-x^2)# and #tantheta=x//sqrt(1-x^2)#.
#=x/(3sqrt(1-x^2))(3+x^2/(1-x^2))#
#=1/(3sqrt(1-x^2))((3-x^2)/(1-x^2))#
#=(x(3-2x^2))/(3(1-x^2)^(3/2))+C#