How do you evaluate the integral #int dx/(1-x^2)^(5/2)#?

1 Answer
Aug 15, 2017

#(x(3-2x^2))/(3(1-x^2)^(3/2))+C#

Explanation:

Let #x=sintheta#. This implies that #dx=costhetad theta#.

#intdx/(1-x^2)^(5/2)#

#=int(costhetad theta)/(1-sin^2theta)^(5/2)#

#=intcostheta/(cos^2theta)^(5/2)d theta#

#=intsec^4thetad theta#

#=intsec^2theta(1+tan^2theta)d theta#

Let #u=tantheta# so #du=sec^2thetad theta#.

#=int(1+u^2)du#

#=u+1/3u^3+C#

#=tantheta+1/3tan^3theta+C#

#=1/3tantheta(3+tan^2theta)+C#

Where #x=sintheta#, we have a triangle where the opposite side is #x# and the hypotenuse is #1#. Thus, the adjacent side is #sqrt(1-x^2)# and #tantheta=x//sqrt(1-x^2)#.

#=x/(3sqrt(1-x^2))(3+x^2/(1-x^2))#

#=1/(3sqrt(1-x^2))((3-x^2)/(1-x^2))#

#=(x(3-2x^2))/(3(1-x^2)^(3/2))+C#