How do you evaluate the integral #int (ln(lnx))/x dx#?
1 Answer
Mar 7, 2017
Explanation:
First let
#intln(lnx)/xdx=intln(lnx)1/xdx=intln(t)dt#
Now we can use integration by parts which takes the form
#{(u=lnt" "=>" "du=1/tdt),(dv=dt" "=>" "v=t):}#
Then:
#=intln(t)dt=tlnt-intt1/tdt#
#=tlnt-intdt#
#=tlnt-t#
#=t(lnt-1)#
#=lnx(ln(lnx)-1)+C#