How do you evaluate the integral #int ln(x-1)# from 1 to 2?
1 Answer
Please see the explanation section below.
Explanation:
Before attempting to evaluate this improper integral, let's change the variable of integration. (Let's do a substitution.)
Let
Our integral becomes
We need
#int lnt dt = tlnt-t +C#
Returning to the main question,
# = lim_(ararr0^+) [t ln t -t]_a^1#
# = lim_(ararr0^+) [(0-1) - (a ln a -a)]#
# = -1 - lim_(ararr0^+) (a ln a-a)#
# = -1 - lim_(ararr0^+) (a ln a)#
To evaluate
# = lim_(ararr0^+) (ln a/(1/a))# has form#(-oo)/oo# so we try
# = lim_(ararr0^+) ((1/a)/(-1/a^2)) = lim_(ararr0^+) (-a) = 0 # .
So,
And finally,