How do you evaluate the integral #int (x-2)/(3x(x+4))#?
1 Answer
Explanation:
The major component of the solution will be the use of partial fractions.
First, we can bring
#1/3int(x-2)/(x(x+4))dx#
Setting up partial fractions:
#(x-2)/(x(x+4))=A/x+B/(x+4)#
We multiply both sides by the denominator on the left,
#[(x-2)/cancel(x(x+4))=A/cancelx+B/cancel(x+4)] (x(x+4))#
This gives:
#x-2=A(x+4)+Bx#
We pick values of
#=>-2=A(4)#
Solving for
Now we want to solve for B. If we set
#=>-6=B(-4)#
Solving for
#(x-2)/(x(x+4))=A/x+B/(x+4)#
#(x-2)/(x(x+4))=(-1/2)/x+(3/2)/(x+4)#
Substitute back into the integral:
#1/3int(-1/2)/x+(3/2)/(x+4)dx#
We can break up the integral (sum rule):
#1/3int(-1/2)/xdx+1/3int(3/2)/(x+4)dx#
Bringing the constants outside:
#-1/6int(1/x)dx+1/2int1/(x+4)dx#
For the first integral, we know that
#-1/6ln(x)+1/2int1/(x+4)dx#
For the second integral, we can do a substitution, where
#-1/6ln(x)+1/2int1/(u)du#
#=>-1/6ln(x)+1/2ln(u)#
Substitute back in for
#=>1/2ln(x+4)-1/6ln(x)+C#