How do you evaluate the integral #int x^4/(1+x^2)dx#?

1 Answer
Jan 18, 2017

The answer is #=x^3/3-x+arctan(x)+C#

Explanation:

We need

#intx^ndx=x^(n+1)/(n+1)+C(n!=-1)#

We perform a polynomial long division

#color(white)(aaaa)##x^4##color(white)(aaaaaaaaa)##∣##x^2+1#

#color(white)(aaaa)##x^4+x^2##color(white)(aaaaa)##∣##x^2-1#

#color(white)(aaaaa)##0-x^2#

#color(white)(aaaaaaa)##-x^2-1#

#color(white)(aaaaaaaaa)##0+1#

Therefore,

#x^4/(x^2+1)=(x^2-1)+1/(x^2+1)#

So,

#int(x^4dx)/(x^2+1)=int(x^2-1)dx+color(red)(intdx/(x^2+1))#

#=x^3/3-x+color(red)(intdx/(x^2+1))#

The integral in red is done by trigonometric substitution

Let #x=tantheta#, #=>#, #dx=sec^2theta d theta#

and, #x^2+1=tan^2theta+1=sec^2theta#

Therefore,

#color(red)(intdx/(x^2+1)=int(sec^2theta d theta)/sec^2theta=intd theta=theta=arctan(x))#

Putting it all together

#int(x^4dx)/(x^2+1)=x^3/3-x+arctan(x)+C#