Using integration by parts we have that
#int ln(1+x^3)dx=int x'ln(1+x^3)dx=x*ln(1+x^3)-int x*[3x^2]/[1+x^3]dx#
Now for the integral
#int [3x^3]/(1+x^3)dx=int (x-2)/(x^2-x+1)dx-int1/(x+1)+int 3dx=
int (x-2)/(x^2-x+1)dx-lnabs(x+1)+3x#
Now for the integral
#int (x-2)/(x^2-x+1)dx=int 1/2[2x-1]/[x^2-x+1]dx+int [3/2]/[x^2-x+1]dx=
1/2*ln(x^2-x+1)-3/2int 1/[x^2-x+1]dx#
Now we have to calculate the integral as follows
#int 1/[x^2-x+1]dx=int 1/[(x-1/2)^2+3/4]dx=
4/3 int 1/[((x-1/2)/(sqrt3/2))^2+1]dx#
Now we set
#[x-1/2]/[sqrt3/2]=tant=>x-1/2=sqrt3/2*(tant)#
Hence
#dx=sqrt3/2*sec^2t*dt#
Thus now the integral becomes
#4/3* int 1/[tan^2t+1]*(sqrt3/2)*sec^2t*dt=
2/{sqrt3]*tan^-1[(2x-1)/3]#
Finally we get that
# int ln(1+x^3) dx = x ln(x^3+1)-1/2 ln(x^2-x+1)-3 x+ln(x+1)+sqrt(3) tan^(-1)((2 x-1)/sqrt(3))+c#