How do you evaluate the integral of #int (sinx+sinxtan^2x)/sec^2x# to 0 to pi/3?
1 Answer
Sep 10, 2016
Explanation:
We have:
#I=int_0^(pi/3)(sinx+sinxtan^2x)/sec^2xdx#
#=int_0^(pi/3)(sinx+sinx(sin^2x/cos^2x))/(1/cos^2x)dx#
#=int_0^(pi/3)cos^2x(sinx+sin^3x/cos^2x)dx#
#=int_0^(pi/3)(cos^2xsinx+sin^3x)dx#
Let
#I=int_0^(pi/3)(cos^2xsinx+sinx-cos^2xsinx)dx#
#=int_0^(pi/3)sinxdx#
Note that
#I=[-cosx]_0^(pi/3)#
#=-cos(pi/3)-(-cos(0))#
#=-1/2-(-1)#
#=1/2#