How do you evaluate the integral of #int t^2*e^(-5*t) dt#?
1 Answer
Explanation:
We will use integration by parts. This takes the form
So, let
So:
#intt^2e^(-5t)dt=uv-intvdu#
#color(white)(intt^2e^(-5t)dt)=t^2(-1/5e^(-5t))-int(-1/5e^(-5t))(2tdt)#
#color(white)(intt^2e^(-5t)dt)=-t^2/5e^(-5t)+int2/5te^(-5t)dt#
Again, we need integration by parts. Let
#color(white)(intt^2e^(-5t)dt)=-t^2/5e^(-5t)+(uv-intvdu)#
#color(white)(intt^2e^(-5t)dt)=-t^2/5e^(-5t)+2/5t(-1/5e^(-5t))-int(-1/5e^(-5t))(2/5dt)#
#color(white)(intt^2e^(-5t)dt)=-t^2/5e^(-5t)-(2t)/25e^(-5t)+int2/25e^(-5t)dt#
Using the integral from before,
#color(white)(intt^2e^(-5t)dt)=-t^2/5e^(-5t)-(2t)/25e^(-5t)-2/125e^(-5t)+C#