How do you evaluate the integral of #int t^2*e^(-5*t) dt#?

1 Answer
Dec 18, 2016

#-t^2/5e^(-5t)-(2t)/25e^(-5t)-2/125e^(-5t)+C#

Explanation:

We will use integration by parts. This takes the form #intudv=uv-intvdu#. When we choose values for #u# and #dv#, we want our value of #u# to become simpler as we differentiate it.

So, let #u=t^2# and #dv=e^(-5t)dt#. So, #du=2tdt# and #v=inte^(-5t)dt=-1/5e^(-5t)#.

So:

#intt^2e^(-5t)dt=uv-intvdu#

#color(white)(intt^2e^(-5t)dt)=t^2(-1/5e^(-5t))-int(-1/5e^(-5t))(2tdt)#

#color(white)(intt^2e^(-5t)dt)=-t^2/5e^(-5t)+int2/5te^(-5t)dt#

Again, we need integration by parts. Let #u=2/5t# so #du=2/5dt#. Again let #dv=e^(-5t)dt# so again #v=-1/5e^(-5t)#.

#color(white)(intt^2e^(-5t)dt)=-t^2/5e^(-5t)+(uv-intvdu)#

#color(white)(intt^2e^(-5t)dt)=-t^2/5e^(-5t)+2/5t(-1/5e^(-5t))-int(-1/5e^(-5t))(2/5dt)#

#color(white)(intt^2e^(-5t)dt)=-t^2/5e^(-5t)-(2t)/25e^(-5t)+int2/25e^(-5t)dt#

Using the integral from before, #inte^(-5t)dt=-1/5e^(-5t)#:

#color(white)(intt^2e^(-5t)dt)=-t^2/5e^(-5t)-(2t)/25e^(-5t)-2/125e^(-5t)+C#