How do you evaluate the integral of #int t sin 2t dt #?

1 Answer

#int t*sin 2t*dt=-1/2t*cos 2t+1/4*sin 2t+C#

Explanation:

From the given integral #int t* sin 2t *dt#, the solution is by
Integration by Parts

#int u*dv=uv-int v*du#

Let #u=t#
Let #dv=sin 2t *dt#
Let #v=-1/2*cos 2t#
Let #du=dt#

#int u*dv=uv-int v*du#
#int t*sin 2t*dt=t*(-1/2cos 2t)-int -1/2cos 2t*dt#

#int t*sin 2t*dt=t*(-1/2cos 2t)+1/2int cos 2t*dt#

#int t*sin 2t*dt=-1/2t*cos 2t+1/4int cos 2t*2dt#

#int t*sin 2t*dt=-1/2t*cos 2t+1/4*sin 2t+C#

God bless....I hope the explanation is useful.