How do you evaluate the integral of #intln(x^2 - 1)dx#?

1 Answer
Feb 18, 2016

Use integration by parts and integration by partial fractions to find that the integral evaluates to

#xln(x^2-1)-2x-ln|x-1|+ln|x+1|+C#

Explanation:

We will proceed using integration by parts and partial fraction decomposition .

We start by using integration by parts.

Let #u = ln(x^2-1)# and #dv = dx#

Then #du = (2x)/(x^2-1)dx# and #v = x#

By the integration by parts formula #intudv = uv - intvdu#

#intln(x^2-1)dx = xln(x^2-1) - int(2x^2)/(x^2-1)dx#

#=xln(x^2-1)-2int(1+1/(x^2-1))dx#

#=xln(x^2-1)-2int1dx -2int1/(x^2-1)dx#

#=xln(x^2-1)-2x-2int1/((x+1)(x-1))dx#

To evaluate the remaining integral, we can use partial fractions.

#1/((x+1)(x-1))=A/(x+1)+B/(x-1)#

#=> 1 = A(x-1) + B(x+1)#

#=(A+B)x + (-A+B)#

#=>{(A+B=0), (-A+B=1):}#

#=>{(A = -1/2),(B=1/2):}#

#=>int(1/((x+1)(x-1))dx = int((1/2)/(x-1)-(1/2)/(x+1))dx#

#=1/2(int1/(x-1)dx-int1/(x+1)dx)#

#=1/2(ln|x-1|-ln|x+1|)+C#

Substituting this back into the prior result, we have

#intln(x^2-1)dx = #
#= xln(x^2-1)-2x-ln|x-1|+ln|x+1|+C#