How do you evaluate the limit #((3+h)^3-27)/h# as h approaches #0#?
1 Answer
Dec 5, 2016
Explanation:
The first step is to simplify
#(h+3)^3=(h+3)^2(h+3)#
#=(h^2+6h+9)(h+3)#
#=h^3+9h^2+27h+27#
Then:
#lim_(hrarr0)((3+h)^3-27)/h=lim_(hrarr0)((h^3+9h^2+27h+27)-27)/h#
#=lim_(hrarr0)(h^3+9h^2+27h)/h#
#=lim_(hrarr0)(h(h^2+9h+27))/h#
#=lim_(hrarr0)(h^2+9h+27)#
#=0^2+9(0)+27#
#=27#