How do you evaluate the limit #(3x^4-x+1)/(5x^3-7x^4)# as x approaches #oo#?
1 Answer
Jul 28, 2017
Explanation:
#"divide terms on the numerator/denominator by the highest"#
#"power of x that is " x^4#
#((3x^4)/x^4-x/x^4+1/x^4)/((5x^3)/x^4-(7x^4)/x^4)=(3-1/x^3+1/x^4)/(5/x-7)#
#rArrlim_(xtooo)(3x^4-x+1)/(5x^3-7x^4)#
#=lim_(xtooo)(3-1/x^3+1/x^4)/(5/x-7)=-3/7#