How do you evaluate the limit of #-x^4+x^3-2x+1# as #x->-1#? Calculus Limits Determining Limits Algebraically 1 Answer Hammer Mar 25, 2018 #lim_(x->-1) -x^4 + x^3 - 2x +1 = 1# Explanation: If #x-> -1#, then #-x^4 + x^3-2x+1 -> -(-1)^4 + (-1)^3 -2(-1)+1# Therefore, #lim_(x->-1)-x^4 + x^3 - 2x +1 = -1 -1 + 2 + 1 = 1#. Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 1402 views around the world You can reuse this answer Creative Commons License