How do you evaluate the limit #(sqrtx-2)/(x-4)# as x approaches #4#?
1 Answer
Nov 23, 2016
# lim_(x rarr 4) (sqrt(x)-2)/(x-4) = 1/4#
Explanation:
The denominator can be viewed as the difference of two squares, so we can write:
# lim_(x rarr 4) (sqrt(x)-2)/(x-4) = lim_(x rarr 4) (sqrt(x)-2)/(sqrt(x)^2-2^2)#
# :. lim_(x rarr 4) (sqrt(x)-2)/(x-4) = lim_(x rarr 4) (sqrt(x)-2)/((sqrt(x)-2)(sqrt(x)+2))#
# :. lim_(x rarr 4) (sqrt(x)-2)/(x-4) = lim_(x rarr 4) 1/((sqrt(x)+2))#
# :. lim_(x rarr 4) (sqrt(x)-2)/(x-4) = 1/((sqrt(4)+2))#
# :. lim_(x rarr 4) (sqrt(x)-2)/(x-4) = 1/((2+2))#
# :. lim_(x rarr 4) (sqrt(x)-2)/(x-4) = 1/4#
This is confirmed visually from the graph
graph{(sqrt(x)-2)/(x-4) [-0.166, 4.835, -1.01, 1.49]}