How do you evaluate the limit #(x^4+5x^3+6x^2)/(x^2(x+1)-4(x+1))# as x approaches -2?

1 Answer
Sep 16, 2016

1

Explanation:

direct substitution into the expression yields #0/0# that is indeterminate form.

Factorising numerator/denominator.

#(x^2(x^2+5x+6))/((x+1)(x^2-4))=(x^2cancel((x+2))(x+3))/((x+1)cancel((x+2))(x-2))#

#=(x^2(x+3))/((x+1)(x-2))#

#rArrlim_(xto-2)(x^4+5x^3+6x^2)/(x^2(x+1)-4(x+1))#

#=lim_(xto-2)(x^2(x+3))/((x+1)(x-2))#

#=(4(1))/((-1)(-4))=4/4=1#