How do you expand #(1+x+x^2)^3 # using the binomial theorem?
1 Answer
Explanation:
I don't think you do use the binomial theorem for this one, since
We can long multiply the coefficients a couple of times like this:
#1color(white)(00)1color(white)(00)1#
#color(white)(000)1color(white)(00)1color(white)(00)1#
#underline(color(white)(000000)1color(white)(00)1color(white)(00)1)#
#1color(white)(00)2color(white)(00)3color(white)(00)2color(white)(00)1#
#1color(white)(00)2color(white)(00)3color(white)(00)2color(white)(00)1#
#color(white)(000)1color(white)(00)2color(white)(00)3color(white)(00)2color(white)(00)1#
#underline(color(white)(000000)1color(white)(00)2color(white)(00)3color(white)(00)2color(white)(00)1)#
#1color(white)(00)3color(white)(00)6color(white)(00)7color(white)(00)6color(white)(00)3color(white)(00)1#
So:
#(1+x+x^2)^3=1+3x+6x^2+7x^3+6x^4+3x^5+x^6#
Note that this is like picking the
#color(white)(0000000000000)1#
#color(white)(0000000000)1color(white)(00)1color(white)(00)1#
#color(white)(0000000)1color(white)(00)2color(white)(00)3color(white)(00)2color(white)(00)1#
#color(white)(0000)1color(white)(00)3color(white)(00)6color(white)(00)7color(white)(00)6color(white)(00)3color(white)(00)1#