How do you express #1/(x^2+x+1) # in partial fractions?

1 Answer
Mar 24, 2016

#1/(x^2+x+1)=(sqrt(3)i)/(3(x+1/2+sqrt(3)/2i))-(sqrt(3)i)/(3(x+1/2-sqrt(3)/2i))#

Explanation:

This expression can only be split down further if we use Complex coefficients...

#x^2+x+1#

#= (x+1/2)^2+3/4#

#= (x+1/2)^2-(sqrt(3)/2i)^2#

#= (x+1/2-sqrt(3)/2i)(x+1/2+sqrt(3)/2i)#

So:

#1/(x^2+x+1) = A/(x+1/2-sqrt(3)/2i)+B/(x+1/2+sqrt(3)/2i)#

#=(A(x+1/2+sqrt(3)/2i)+B(x+1/2-sqrt(3)/2i))/(x^2+x+1)#

#=((A+B)x+(A(1/2+sqrt(3)/2i)+B(1/2-sqrt(3)/2i)))/(x^2+x+1)#

Equating coefficients, we find:

#{ (A+B=0), (A(1/2+sqrt(3)/2i)+B(1/2-sqrt(3)/2i)=1) :}#

From the first equation we find #B=-A#.

Substitute this in the second equation to get:

#Asqrt(3)i = 1#

Hence:

#{ (A = 1/(sqrt(3)i) = -sqrt(3)/3i), (B=sqrt(3)/3i) :}#

So:

#1/(x^2+x+1) = B/(x+1/2+sqrt(3)/2i)+A/(x+1/2-sqrt(3)/2i)#

#=(sqrt(3)i)/(3(x+1/2+sqrt(3)/2i))-(sqrt(3)i)/(3(x+1/2-sqrt(3)/2i))#