How do you express #(12x^-5y^5)/(24x^3y^-2)# in simplest form, using only positive exponents?

1 Answer
Mar 5, 2017

See the entire simplification process below:

Explanation:

First, rewrite this expression as:

#(12/24)(x^-5/x^3)(y^5/y^-2) = 1/2(x^-5/x^3)(y^5/y^-2)#

Now, use these rules for exponents to simplify the #x# and #y# terms:

#x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))# and #x^color(red)(a)/x^color(blue)(b) = 1/x^(color(blue)(b)-color(red)(a))#

#1/2(x^color(red)(-5)/x^color(blue)(3))(y^color(red)(5)/y^color(blue)(-2)) = 1/2(1/x^(color(blue)(3)-color(red)(-5)))(y^(color(red)(5)-color(blue)(-2)))=#

#1/2(1/x^(color(blue)(3)+color(red)(5)))(y^(color(red)(5)+color(blue)(2))) = 1/2(1/x^8)(y^7) =#

#y^7/(2x^8)#