Looking to the denominator #x^4-9x^2=x^2(x+3)(x-3)# then the fraction admits an expansion such that #(2x+3)/(x^4-9x^2)=A/x+B/x^2+C/(x+3)+D/(x-3)# so
doing #f = (2x+3)/(x^4-9x^2)-A/x-B/x^2-C/(x+3)-D/(x-3)=0# and calculanting #f(x^4-9x^2) = (D+C-A)x^3+(3D+B-3C)x^2+(9A+2)x+3-9B =0# for all values of x, we get: #A=-2/9,B=1/3,C=-1/18,D=-1/6#