How do you express # (5x^2 - 25x + 28) / (x^2(x-7))# in partial fractions?
1 Answer
Dec 21, 2017
Explanation:
Given:
#(5x^2-25x+28)/(x^2(x-7))#
#= A/x+B/x^2+C/(x-7)#
#= (Ax(x-7)+B(x-7)+Cx^2)/(x^2(x-7))#
#= ((A+C)x^2+(-7A+B)x+(-7B))/(x^2(x-7))#
So:
#{ (A+C = 5), (-7A+B=-25), (-7B=28) :}#
From the third equation, we find that
Substituting this value of
Then substituting this value of
So:
#(5x^2-25x+28)/(x^2(x-7)) = 3/x-4/x^2+2/(x-7)#