How do you express sin theta - cottheta + tan^2 theta in terms of cos theta ?

1 Answer
Jun 10, 2016

sqrt(1-cos^2theta -- costheta/sqrt(1-cos^2theta+(1 -cos^2theta)/cos^2theta

Explanation:

sintheta= sqrt(1-cos^2theta
cottheta=costheta/sintheta=costheta/sqrt(1-cos^2theta
tan^2theta= sec^2theta - 1=1/(cos^2theta) - 1 = {1-cos^2theta}/cos^2theta

Hence, the reqd. expression =sqrt(1-cos^2theta -- costheta/sqrt(1-cos^2theta+(1 -cos^2theta)/cos^2theta