How do you express #sin theta - csc theta + sec theta # in terms of #cos theta #?

1 Answer
Jan 12, 2016

#=(1-cos^3(theta))/(cos(theta)sqrt(1-cos^2(theta))#

Explanation:

#sin(theta) - csc(theta) + sec(theta)#

#=sin(theta)- 1/sin(theta) +1/cos(theta)#

#=(sin(theta)sin(theta)-1)/sin(theta) + 1/cos(theta)#

#=(sin^2(theta)-1)/sin(theta) + 1/cos(theta)#

#=-(1-sin^2(theta))/sin(theta) + 1/cos(theta)#

#=-cos^2(theta)/sin(theta) +1/cos(theta)#

#=(-cos^2(theta)*cos(theta))+1/(sin(theta)cos(theta))#

#=(-cos^3(theta)+1)/(cos(theta)sqrt(1-cos^2(theta))#

#=(1-cos^3(theta))/(cos(theta)sqrt(1-cos^2(theta))#