How do you express #x^4/(x-1)^3# in partial fractions?

1 Answer
Nov 3, 2016

#x^4/(x-1)^3 = x + 3+6/(x-1)+4/(x-1)^2+1/(x-1)^3#

Explanation:

#x^4/(x-1)^3 = x^4/(x^3-3x^2+3x-1)#

#color(white)(x^4/(x-1)^3) = ((x^4-3x^3+3x^2-x)+(3x^3-3x^2+x))/(x^3-3x^2+3x-1)#

#color(white)(x^4/(x-1)^3) = x + (3x^3-3x^2+x)/(x^3-3x^2+3x-1)#

#color(white)(x^4/(x-1)^3) = x + ((3x^3-9x^2+9x-3)+(6x^2-8x+3))/(x^3-3x^2+3x-1)#

#color(white)(x^4/(x-1)^3) = x + 3+(6x^2-8x+3)/(x^3-3x^2+3x-1)#

#color(white)(x^4/(x-1)^3) = x + 3+A/(x-1)+B/(x-1)^2+C/(x-1)^3#

#color(white)(x^4/(x-1)^3) = x + 3+(A(x-1)^2+B(x-1)+C)/(x-1)^3#

#color(white)(x^4/(x-1)^3) = x + 3+(A(x^2-2x+1)+B(x-1)+C)/(x-1)^3#

#color(white)(x^4/(x-1)^3) = x + 3+(Ax^2+(-2A+B)x+(A-B+C))/(x-1)^3#

Equating coefficients, we find:

#{ (A = 6), (-2A+B=-8), (A-B+C=3) :}#

Hence:

#{ (A = 6), (B=4), (C=1) :}#

So:

#x^4/(x-1)^3 = x + 3+6/(x-1)+4/(x-1)^2+1/(x-1)^3#