How do you factor #14n^3 - 21n^2 - 8n + 12#?

1 Answer
Jan 15, 2016

Factor by grouping to find:

#14n^3-21n^2-8n+12#

#=(7n^2-4)(2n-3)#

#=(sqrt(7)n-2)(sqrt(7)n+2)(2n-3)#

Explanation:

The difference of squares identity can be written:

#a^2-b^2=(a-b)(a+b)#

Use this with #a=sqrt(7)n# and #b=2# after factoring by grouping:

#14n^3-21n^2-8n+12#

#=(14n^3-21n^2)-(8n-12)#

#=7n^2(2n-3)-4(2n-3)#

#=(7n^2-4)(2n-3)#

#=((sqrt(7)n)^2-2^2)(2n-3)#

#=(sqrt(7)n-2)(sqrt(7)n+2)(2n-3)#