How do you factor #18x^3-6x^2+9x#?

1 Answer
Oct 11, 2016

#18x^3-6x^2+9x = color(green)(3x(6x^2-2x+3)#

Explanation:

Given
#color(white)("XXX")18x^3-6x^2+9x#

Extracting the (hopefully) obvious factor of #color(brown)(3x)#
#color(white)("XXX")=color(brown)(3x)(6x^2-2x+3)#

Checking the discriminant: #b^2-4ac#:
#color(white)("XXX")(-2)^2-4xx6xx3=-68 < 0#
#color(white)("XXX")rArr #no Real roots

#rArr 3x(6x^2-2x+3)# is the complete factorization (in #RR#).