How do you factor #a^ { 2} + 12a - 54= 10#?
1 Answer
Mar 27, 2017
Complete the square to find:
#(a-4)(a+16) = 0#
Explanation:
Note that:
#(a+6)^2 = a^2+12a+36#
So let us add
#a^2+12a+36 = 100#
The resulting right hand side is a perfect square too and this can be written:
#(a+6)^2 = 10^2#
The difference of squares identity can be written:
#A^2-B^2 = (A-B)(A+B)#
So with
#0 = (a+6)^2-10^2 = ((a+6)-10)((a+6)+10) = (a-4)(a+16)#
So we can write our original equation as:
#(a-4)(a+16) = 0#