How do you factor #a^3-2ab^2-b^3#?
1 Answer
Mar 3, 2018
#= (a+b)(a^2-ab+b^2)#
#= (a+b)(a-(1/2+sqrt(5)/2)b)(a-(1/2-sqrt(5)/2)b)#
Explanation:
Given:
#a^3-2ab^2-b^3#
Note that this is homogeneous of degree
So consider the related cubic in one variable:
#x^3-2x-1#
This has rational zero
#x^3-2x-1 = (x+1)(x^2-x-1)#
The remaining quadratic factors by completing the square:
#x^2-x-1 = (x-1/2)^2-5/4#
#color(white)(x^2-x-1) = (x-1/2)^2-(sqrt(5)/2)^2#
#color(white)(x^2-x-1) = ((x-1/2)-sqrt(5)/2)((x-1/2)+sqrt(5)/2)#
#color(white)(x^2-x-1) = (x-1/2-sqrt(5)/2)(x-1/2+sqrt(5)/2)#
Then converting this back to homogeneous polynomials we have:
#a^3-2ab^2-b^3 = (a+b)(a^2-ab+b^2)#
#color(white)(a^3-2ab^2-b^3) = (a+b)(a-(1/2+sqrt(5)/2)b)(a-(1/2-sqrt(5)/2)b)#