How do you factor #c^ { 2} - 3c + 19#?

1 Answer
Aug 12, 2017

#c^2-3c+19 = (c-3/2-sqrt(67)/2i)(c-3/2+sqrt(67)/2i)#

Explanation:

We can factor this quadratic trinomial by completing the square, but only with non-real complex coefficients.

Ths difference of squares identity can be written:

#a^2-b^2 = (a-b)(a+b)#

We use this with #a=(c-3/2)# and #b=sqrt(67)/2i# as follows:

#c^2-3c+19 = c^2-2(3/2)c+9/4+67/4#

#color(white)(c^2-3c+19) = (c-3/2)^2+(sqrt(67)/2)^2#

#color(white)(c^2-3c+19) = (c-3/2)^2-(sqrt(67)/2i)^2#

#color(white)(c^2-3c+19) = ((c-3/2)-sqrt(67)/2i)((c-3/2)+sqrt(67)/2i)#

#color(white)(c^2-3c+19) = (c-3/2-sqrt(67)/2i)(c-3/2+sqrt(67)/2i)#

where #i# is the imaginary unit, satisfying #i^2=-1#