How do you factor #c^ { 2} - 3c + 19#?
1 Answer
Aug 12, 2017
Explanation:
We can factor this quadratic trinomial by completing the square, but only with non-real complex coefficients.
Ths difference of squares identity can be written:
#a^2-b^2 = (a-b)(a+b)#
We use this with
#c^2-3c+19 = c^2-2(3/2)c+9/4+67/4#
#color(white)(c^2-3c+19) = (c-3/2)^2+(sqrt(67)/2)^2#
#color(white)(c^2-3c+19) = (c-3/2)^2-(sqrt(67)/2i)^2#
#color(white)(c^2-3c+19) = ((c-3/2)-sqrt(67)/2i)((c-3/2)+sqrt(67)/2i)#
#color(white)(c^2-3c+19) = (c-3/2-sqrt(67)/2i)(c-3/2+sqrt(67)/2i)#
where