How do you factor out the GCF of #8x ^ { 3} y ^ { 2} - 4x ^ { 2} y ^ { 3} + 14x y ^ { 4}#?

1 Answer
Jul 16, 2017

#8x ^ { 3} y ^ { 2} - 4x ^ { 2} y ^ { 3} + 14x y ^ { 4}#
#= 2xy^2(4x^2 -2xy + 7y^2)#
#" "uarrcolor(white)(xxxxxx)uarr#
#=HCF (' "left-overs' from each term")#

Explanation:

#8x ^ { 3} y ^ { 2} - 4x ^ { 2} y ^ { 3} + 14x y ^ { 4}#

First identify what factors are common in each term. This includes the indices.

By inspection, we see #2 and x and y^2" "larr#this is the #HCF#

Now DIVIDE each term by the HCF and write the quotients,
(the left-overs), in a bracket:

#8x ^ { 3} y ^ { 2} - 4x ^ { 2} y ^ { 3} + 14x y ^ { 4}#

#= 2xy^2(4x^2 -2xy + 7y^2)#