How do you solve #x^3 - 4x-2=0#?
1 Answer
Use a trigonometric method to find roots:
#x_k = (4sqrt(3))/3 cos(1/3 cos^(-1)((3 sqrt(3))/8) + (2kpi)/3) " "# for#k = 0, 1, 2.#
Explanation:
#f(x) = x^3-4x-2#
Descriminant
The discriminant
#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#
In our example,
#Delta = 0+256+0-108+0 = 148#
Since
Trigonometric solution
Use a substitution of the form
Let
Then:
#0 = x^3-4x-2#
#= k^3 cos^3 theta - 4k cos theta - 2#
#= (64 sqrt(3))/9 cos^3 theta - (16 sqrt(3))/3 cos theta - 2#
#= (16 sqrt(3))/9 (4 cos^3 theta - 3 cos theta) - 2#
#= (16 sqrt(3))/9 cos 3 theta - 2#
Hence:
#cos 3 theta = 2* 9/(16 sqrt(3)) = (3 sqrt(3))/8#
So:
#3 theta = +-cos^(-1)((3 sqrt(3))/8) + 2kpi#
#theta = +-1/3 cos^(-1)((3 sqrt(3))/8) + (2kpi)/3#
#cos theta = cos(1/3 cos^(-1)((3 sqrt(3))/8) + (2kpi)/3)#
Hence distinct roots:
#x_k = (4sqrt(3))/3 cos(1/3 cos^(-1)((3 sqrt(3))/8) + (2kpi)/3) " "# for#k = 0, 1, 2.#