How do you find a formula for the sum n terms #Sigma(2i)/n(2/n)# and then find the limit as #n->oo#?
1 Answer
Nov 20, 2016
Explanation:
We will need the standard results:
Let
# S_n = sum_(i=1)^n (2i)/n(2/n) #
# :. S_n = 4/n^2sum_(i=1)^n i #
# :. S_n = 4/n^2{ 1/2n(n+1) } #
# :. S_n = 2/n(n+1) #
# :. S_n = 2 + 2/n #
Hence,
Consequently,
# lim_(n rarr oo) S_n = lim_(n rarr oo) (2 + 2/n) #
# lim_(n rarr oo) S_n = lim_(n rarr oo) (2) + lim_(n rarr oo) (2/n) #
# lim_(n rarr oo) S_n = 2 + 0 #
# lim_(n rarr oo) S_n = 2 #