Calculate the first and second derivatives
The function is
#f(x)=x^4-4x^3+20#
Calculate the first derivative
#f'(x)=4x^3-12x^2#
#f'(x)=0#
#=>#, #4x^3-12x^2=0#
#=>#, #4x^2(x-3)=0#
The critical points are #x=0# and #x=3#
Construct a variation chart
#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##0##color(white)(aaaaaa)##3##color(white)(aaaa)##+oo#
#color(white)(aaaa)##f'(x)##color(white)(aaaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##+#
#color(white)(aaaa)##f(x)##color(white)(aaaaa)##↘##color(white)(aaaa)##↘##color(white)(aaaa)##↗#
There is a local minimum at #(3, -7)#
Calculate the second derivative
#f''(x)=12x^2-24x#
The points of inflections are when #f''(x)=0#
#12x^2-24x=0#
#=>#, #12x(x-2)=0#
#=>#, #x=0# and #x=2#
The inflection points are #(0, 20)# and #(2,4)#
Build a variation chart to determine the concavities
#color(white)(aaaa)##" Interval "##color(white)(aaaa)##(-oo, 0)##color(white)(aaaa)##(0,2)##color(white)(aaaa)##(2,+oo)#
#color(white)(aaaa)##" sign f''(x)"##color(white)(aaaaaaa)##+##color(white)(aaaaaaa)##-##color(white)(aaaaaaaa)##+#
#color(white)(aaaa)##" f(x)"##color(white)(aaaaaaaaaaaa)##uu##color(white)(aaaaaaa)##nn##color(white)(aaaaaaaa)##uu#
graph{x^4-4x^3+20 [-32.73, 32.24, -5.85, 26.6]}