How do you find all the complex fourth-roots in rectangular form of #w=25(cos(4pi)/3 + isin(4pi)/3)#?
1 Answer
Aug 7, 2017
Explanation:
Let's first simplify the expression.
#w = 25(1/3 + i(sin(4pi))/3)#
#w = 25(1/3 + 0)#
Or
#color(red)(w = 25/3#
The
-
#root(4)(25/3) = ul((sqrt5)/(root(4)(3))) ~~ color(blue)(ulbar(|stackrel(" ")(" "1.699" ")|)# -
#ul((isqrt5)/(root(4)(3))) ~~ color(blue)(ulbar(|stackrel(" ")(" "1.699i" ")|)# -
#ul(-(sqrt5)/(root(4)(3))) ~~ color(blue)(ulbar(|stackrel(" ")(" "-1.699" ")|)# -
#ul(-(isqrt5)/(root(4)(3))) ~~ color(blue)(ulbar(|stackrel(" ")(" "-1.699i" ")|)#