How do you find an equation of the tangent line to the curve at the given point y=sinx+3 and x=π?

1 Answer
Jan 25, 2017

y+x=3+π

Explanation:

we use

yy1=m(xx1)

where (x1,y1) is a known coordinate; and m=gradient

y=sinx+3

y(π)=sinπ+3=0+3=3

(x1,y1)=(π,3)

gradient of tangent m=(dydx)x=π

y=sinx+3

dydx=cosx

m=(dydx)x=π=cosπ=1

eqn tgt

y3=1(xπ)

y3=x+π

y+x=3+π