How do you find an equation to the tangent line to the curve #y = 2 sin^2x# at #x = Pi/4#?

1 Answer
Sep 2, 2015

#y=2x+1-pi/2#

Explanation:

The tangent line could be represented as :
#y=mx+c#

where #color(red)m# is the gradient of that tangent, and
#m=((dy)/(dx))_(x=pi/4)#

#color(red)c# is the #y#-intercept

First find #m# :

#y=2sin^2x#
#(dy)/(dx)=2*2sinx*cosx=2sin(2x)#

Since, #m=((dy)/(dx))_(x=pi/4)#

#=>m=2sin(2*pi/4)=2*1=color(red)2#

The equation of tangent is now : #y=2x+c#

To find #c# we plug in the values of #x# and #y# at the point where the tangent touches the curve(#y=2sin^2x#)

The tangent is at the point, where
#x=pi/4#

The corresponding #y# is found by putting #x=pi/4# inside #y=2sin^2x#

#=>y=2sin^2(pi/4)=2*(1/sqrt2)^2=2*1/2=1#

Plug those into #y=2x+c#

#=>1=2*pi/4+c#

Where looking for #c#

#=>c=color(red)(1-pi/2)#

Hence , tangent is : #color(blue)(y=2x+1-pi/2)#