How do you find at equation of the tangent line to the graph #y=4+cotx-2cscx# at x=pi/2?

1 Answer
Oct 24, 2016

#y=-x+(pi/2+2)#

Explanation:

To find the equation of this tangent line we have to find the slope of this line at #x=pi/2# that is
#color(red)(slope = y' at x=pi/2#

#y_(pi/2)=4+cot(pi/2)-2csc(pi/2)#

#y_(pi/2)=4+0-2*1#
#y_(pi/2)=2#

this line passes through #(color(blue)(pi/2,2))#

To find the #color(red)(slope)# we should find #color(red)(y'_(pi/2))#

#y=4+cotx-2cscx#

#y'=4'+(cotx)'-2(cscx)'#

#y'=0-csc^2x-2(-cscxcotx)#
#y'=-csc^2x+2cscxcotx#

#color(red)(y'_(pi/2)=-csc^2(pi/2)+2csc(pi/2)cot(pi/2)#

#color(red)(y'_(pi/2)=-1+2*0=-1)#

The Equation of the tangent line with slope#-1# and passing through #(color(blue)(pi/2,2))#
:
#y-color(blue)(y_0)=color(red)(y'_(pi/2))(x-color(blue)(x_0))#
#y-2=-1(x-pi/2)#

#y=-x+(pi/2+2)#