How do you find dy/dx when #y=ln(tanx)#?
2 Answers
Use the derivative of the natural logarithm and the chain rule:
(Which can also be written:
You'll also need
So, for
This can be simplified using trigonometric identities:
OR if preferred,
We can also use the property that
#y=ln(tanx)=ln(sinx/cosx)=ln(sinx)-ln(cosx)#
Then, to differentiate this, use the derivative of
#dy/dx=1/sinx(d/dxsinx)-1/cosx(d/dxcosx)#
#dy/dx=cosx/sinx-(-sinx)/cosx#
#dy/dx=(cos^2x+sin^2x)/(cosxsinx)#
#dy/dx=1/cosx(1/sinx)#
#dy/dx=secxcscx#