How do you find dy/dx when #y=ln(tanx)#?

2 Answers
Apr 8, 2015

Use the derivative of the natural logarithm and the chain rule:

#d/(dx) ln (g(x)) = 1/(g(x)) * g'(x)#

(Which can also be written: #d/(dx) ln (u) = 1/u (du)/(dx)#)

You'll also need #d/(dx)(tanx) = sec^2x#

So, for #y=ln(tanx)#, we get

#(dy)/(dx)=1/tanx sec^2x#

This can be simplified using trigonometric identities:

#(dy)/(dx)=1/tanx sec^2x = cotx * sec^2x = cosx / sinx * 1/cos^2x#

#(dy)/(dx)=1 / (sinx cosx) = cscx secx#.

OR if preferred,

#dy/dx = 2/(2sinxcosx) = 2/sin(2x) = 2csc(2x)#

May 16, 2017

We can also use the property that #log(a/b)=log(a)-log(b)#:

#y=ln(tanx)=ln(sinx/cosx)=ln(sinx)-ln(cosx)#

Then, to differentiate this, use the derivative of #ln(x)#, which is #1/x#, to show that #d/dxln(u)=1/u*(du)/dx#, through the chain rule. So:

#dy/dx=1/sinx(d/dxsinx)-1/cosx(d/dxcosx)#

#dy/dx=cosx/sinx-(-sinx)/cosx#

#dy/dx=(cos^2x+sin^2x)/(cosxsinx)#

#dy/dx=1/cosx(1/sinx)#

#dy/dx=secxcscx#