How do you find #f(a), f(a+h)#, and the difference quotient #(f(a+h) - f(a))/h# of #f(x) = 5/(x+7)# where #h!=0#?

1 Answer
Sep 13, 2017

#f(a)=5/(a+7)color(white)("xxx")f(a+h)=5/(a+h+7)color(white)("xxx")(f(a+h)-f(a))/h=-5/((a+7)^2+(a+7)h)#

Explanation:

To find #f(a)# and #f(a+h)#
replace #x# in #f(x)=5/(x+7)# with #a# and #a+h# respectively.

#f(a+h)-f(a)=5/(a+h+7)-5/(a+7)#

#color(white)("XXX")=(5(a+7)-5(a+h+7))/((a+h+7)(a+7))#

#color(white)("XXX")=(-5h)/(a^2+ah+7a+7a+7h+49)#

#color(white)("XXX")=(-5h)/(a^2+14a+49+ah+7h)#

#color(white)("XXX")=(-5h)/((a+7)^2+(a+7)h)#

#(f(a+h)-f(a))/h=((-5h)/((a+7)^2+(a+7)h))/h#

#color(white)("XXX")=(-5)/((a+7)^2+(a+7)h)#

Normally at this point we would be taking the #lim_(hrarr0)# so the #(a+7)h# term in the denominator would effectively disappear.