How do you find #(f+g)(-2)# given #f(x)=x^2-1 and #g(x)=2x-3# and #h(x)=1-4x#?

1 Answer
Apr 10, 2017

See the entire solution process below:

Explanation:

First,

#(f + g)(x) = f(x) + g(x) = x^2 - 1 + 2x - 3#

We can ignore #h(x)# as it is extraneous information to this problem.

To find #(f + g)(-2)# we need to substitute #color(red)(-2)# for each occurrence of #color(red)(x)# in #(f + g)(x)#:

#(f + g)(color(red)(x)) = color(red)(x)^2 - 1 + 2color(red)(x) - 3# becomes:

#(f + g)(color(red)(-2)) = (color(red)(-2))^2 - 1 + (2 * color(red)(-2)) - 3#

#(f + g)(color(red)(-2)) = 4 - 1 - 4 - 3#

#(f + g)(color(red)(-2)) = -4#