How do you find #(g@f)(-2+x)# given #g(x)=2x-2# and #f(x)=x^2+3x#?
1 Answer
Aug 19, 2016
Explanation:
The first step is to find an expression for (g ○ f ), which can also be written as g(f(x)).
To do this substitute x = f(x) into g(x)
#rArrg(f(x))=g(color(red)(x^2+3x))=2(color(red)(x^2+3x))-2#
#rArrg(f(x))=2x^2+6x-2# To evaluate (g ○ f)(-2 +x) substitute x = - 2 +x into g(f(x))
#rArr(g(f(color(magenta)(-2+x)))=2(color(magenta)(-2+x))^2+6(color(magenta)(-2+x))-2#
#=2(4-4x+x^2)-12+6x-2#
#=8-8x+2x^2-12+6x-2=2x^2-2x-6#