# How do you find h(-1) given h(n)=4/3n+8/5?

Mar 20, 2017

$h \left(- 1\right) = \frac{4}{15}$

#### Explanation:

Steps:
Lets first begin by finding the LCD of the two fractions so we can add them.

The LCD is $15$ so we must manipulate each fraction individually so that its denominator is $15$

Lets start with $\frac{4}{3} n$:
To make the denominator $15$ we must multiply both the numerator and denominator by $5$, thus:

$\frac{5}{5} \cdot \frac{4}{3} n = \frac{20}{15} n$

Similarly, we must multiply both the numerator and denominator by $3$ for $\frac{8}{5}$

$\frac{3}{3} \cdot \frac{8}{5} = \frac{24}{15}$

So now we have
$h \left(n\right) = \frac{20}{15} n + \frac{24}{15}$

So...
$h \left(- 1\right) = \frac{20}{15} \left(- 1\right) + \frac{24}{15}$

$h \left(- 1\right) = - \frac{20}{15} + \frac{24}{15}$
$h \left(- 1\right) = \frac{4}{15}$

Mar 20, 2017

$h \left(- 1\right) = \frac{4}{15}$

#### Explanation:

Since it's $h \left(- 1\right)$ plug in -1 for n.

h(-1)=$\frac{4}{3} \left(- 1\right) + \frac{8}{5}$

=$- \frac{4}{3} + \frac{8}{5}$

=$- \frac{20}{15} + \frac{24}{15}$

=$\frac{4}{15}$

ANSWER: $\frac{4}{15}$