How do you find #h(4+t)# given #h(t)=2*3^(t+3)#?

1 Answer
Mar 7, 2017

See the entire solution process below:

Explanation:

To solve this, substitute #color(red)(4 + t)# for every occurrence of #color(blue)(t)# in the function from the problem:

#h(color(blue)(t)) = 2 * 3^(color(blue)(t)+3)# becomes:

#h(color(red)(4 + t)) = 2 * 3^(color(blue)(color(red)(4 + t))+3)#

#h(color(red)(4 + t)) = 2 * 3^(4 + 3 + t)#

#h(color(red)(4 + t)) = 2 * 3^(7 + t)#