How do you find #\int _ { 0} ^ { 2} \frac { e ^ { \sqrt { x + 2} - 3} } { \sqrt { x + 2} } d x#?
1 Answer
Mar 19, 2017
Explanation:
#int_0^2e^(sqrt(x+2)-3)/sqrt(x+2)dx#
Use the substitution
We see that:
#=2int_0^2e^(sqrt(x+2)-3)/(2sqrt(x+2))dx=2int_sqrt2^2e^(u-3)du#
Now let
#=2int_(sqrt2-3)^1e^vdv=2e^v]_(sqrt2-3)^1=2(e-e^(sqrt2-3))=(2(e^2-e^sqrt2))/e^3#