How do you find #int_1^e 2x^2lnx #?

2 Answers
Nov 21, 2015

You can use integration-by-parts to get #2/9+ 4/9 e^(3) approx 9.1491275#

Explanation:

Usually, when your integrand involves a logarithm, it's a good idea to try integration by parts with #u=ln(x)# and #du = 1/x dx#. In this case, we also get #dv = 2x^2 dx# so that #v=2/3 x^3#.

The integration-by-parts formula is #int u\ dv=uv- int v\ du#, so

#int 2x^2 ln(x)\ dx=2/3 x^{3}ln(x)-2/3 int x^2 dx#

#=2/3 x^{3}ln(x) - 2/9 x^{3}+C#.

Therefore, the definite integral is

#int_{1}^{e}2x^{2}ln(x)\ dx=(2/3 e^{3} * 1 - 2/9 e^{3}) - (0 - 2/9)#

#2/9+ 4/9 e^(3) approx 9.1491275#

Nov 21, 2015

#int_1^e 2x^2 ln(x) dx =2/9( 2e^3 + 1 )#

Explanation:

#int_1^e 2x^2 ln(x) dx = 2/3 int_1^e frac{d}{dx}(x^3) ln(x) dx#

#=2/3[ [x^3 ln(x)]_1^e - int_1^e x^3 frac{d}{dx}(ln(x)) dx ]#

#=2/3[ (e^3 - 0) - int_1^e x^3 (1/x) dx ]#

#=2/3[ e^3 - int_1^e x^2 dx ]#

#=2/3[ e^3 - [x^3/3]_1^e ]#

#=2/9[ 3e^3 - [x^3]_1^e ]#

#=2/9[ 3e^3 - (e^3-1) ]#

#=2/9( 2e^3 + 1 )#